

Quiz 3

Name:

Date: 12.03.2024

Question 1

In the lecture, we saw the motion equation for electron displacement $x(t)$ in metals in terms of Drude-Zener model:

$$m \frac{\partial^2 x}{\partial t^2} + m\Gamma \frac{\partial x}{\partial t} = |e|E_0 e^{-i\omega t}$$

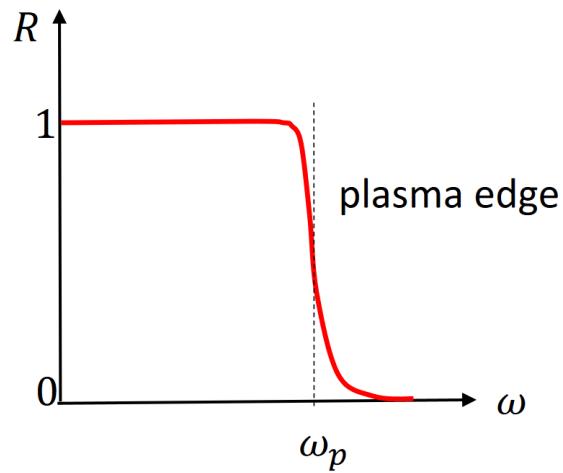
A) What is the dimension of Γ ?

$$[\Gamma] = 1/s$$

After solving the equation, we derived the expression for permittivity:

$$\varepsilon_1(\omega) = 1 - \frac{Ne^2}{\varepsilon_0 m} \frac{1}{\Gamma^2 + \omega^2}$$

B) What is the dimension of the coefficient $\frac{Ne^2}{\varepsilon_0 m}$?


$$\left[\frac{Ne^2}{\varepsilon_0 m} \right] = \frac{1}{s^2}$$

C) What is the dimension of the permittivity $\varepsilon_1(\omega)$?

$[\varepsilon_1(\omega)] = -$, it is dimensionless

Question 2

Draw the typical reflectivity of a metal vs frequency according to the Drude model.

Question 3

On which material properties does the plasma frequency depend on?

Density of free electrons.